Wednesday, January 23, 2019

Asymmetric snowfall [updated]

The pair of Sentinel-2 images above demonstrate an interesting asymmetry in snowfall, visible despite partial cloud cover. These images, acquired 5 days apart on 14 and 19 January, are closely registered and show the Northern Icefield AWS location (click image to enlarge).

The southern slopes and south side of the crater appear not to have gained any accumulation through the 5-day interval. Although slopes to the west are difficult to resolve through the clouds, new snow on the north and northeast flanks is readily apparent above ~4,800 m elevation. Snow also accumulated just south of the Northern Icefield, on the crater's west side.

AWS measurements are still being processed for this interval, which will reveal snowfall timing. In the meantime, the website "earth" allows weather conditions during this period to be visualized. The 17th appears a likely time for this snowfall pattern to have developed. Winds were light and humidity was high at 500 hPa, while a bit lower in the free atmosphere (700 hPa) winds were from just east of north, and humidity was high.

This post will be updated as AWS data and the next S-2 image become available.

[UPDATE 01/25, 2/4:  AWS data from the Northern Icefield (via telemetry) reveal the difficulty of documenting subtle climate features on a large mountain, using measurements at one location. In this case, only 3.5 cm of snow accumulation was recorded over the 5-day interval between images (above). Despite use of 2 sensors, 3 m apart, the timing of minor snowfall events cannot be precisely established from the 4-hourly satellite data, possibly due in part to wind redistribution of snowfall. Once hourly snow measurements and other data are recovered from on-site storage (e.g., solar radiation, wind speed), we may be able to better resolve snowfall timing.

A best guess from the AWS measurements on snowfall timing between these images would be the 18th. Supporting this is the lingering presence of accumulating snow at ~4,800 m, which is unlikely to persist more than a day or two - especially at this time of year. However, collaborator observations suggests that widespread snowfall on the northern slopes occurred a bit earlier. For 14-17 Jan., they report heavy rain at ~3,500 m on the Shira Plateau and to the northwest of Kibo.

Additional satellite images are available from the 9th and 24th of January. The image from yesterday (shown below) shows little change in snowcover at high elevations, consistent with AWS data, yet ablation of snow from the northern slopes.

The image from 9 January (not shown) reveals nearly-uniform cloud cover over the mountain. According to AWS data, snowfall was just getting underway at the time, and resulted in a whopping 24 cm of new snow at the summit by the 14th. This is a relatively large snowfall event for the Northern Icefield, of similar magnitude as the late-October event we experienced (see prior post, below). These two are the largest events since the 2018 long rains. Measurements at the AWS suggest most of this snowfall occurred on the 10th or 11th, 3-4 days prior to the image from the 14th (above) - plenty of time for ablation of most new snow from the slopes.]

No comments:

Post a Comment